با همکاری مشترک دانشگاه پیام نور و انجمن اقتصاد انرژی ایران

نوع مقاله : پژوهشی

نویسنده

عضو هیئت علمی گروه صنایع دانشگاه زابل، ایران

چکیده

یکی از مسائل مهم در اقتصاد پیش‌بینی رشد اقتصادی می‌باشد. پیش‌بینی صحیح رشد اقتصادی، اثر مهمی در سیاست‌گذاری و برنامه‌ریزی‌های اقتصادی دولت دارد و می‌تواند علاوه بر ایجاد زمینه توسعه روش‌های جدید پیش‌بینی، سیاست‌گذاران را در تصمیم‌گیری آتی یاری رساند. پیش‌بینی بر اساس مدل‌های چند متغیری اقتصادسنجی با محدودیت‌های زیادی همراه است، بنابراین یک روش جایگزین استفاده از مدل‌های تک متغیری است. اما اکثر روش‌های تک متغیری برای حصول به نتیجه خوب نیاز به داده‌های زیادی دارند. از این رو در این مطالعه کارایی مدل میانگین متحرک خودرگرسیون تجمعیARIMA) ) با روش‌های مارکف ‌سوئیچینگ و شبکه عصبی فازی (ANFIS) در پیش‌بینی رشد اقتصادی ایران مقایسه می‌شود. برای تخمین مدل از داده‌های دوره 1338 تا 1384 استفاده شده است. سپس کارایی این مدل‌ها در پیش‌بینی رشد اقتصادی ایران برای دوره 1385 تا 1392 با استفاده از معیارهای RMSE، MAE و MAPE ارزیابی و مقایسه شده است. مقایسه این معیارها حاکی از این است که بهترین عملکرد متعلق به روش ANFIS است. همچنین مدل مارکف سوئیچینگ عملکرد بهتری نسبت به مدل ARIMA دارد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Modeling and Predicting of Iran’s Economic Growth Using ANFIS, Markov Switching and ARIMA Models

نویسنده [English]

  • Morteza Salehi Sarbijan

چکیده [English]

Economic growth forecast is a major problem in economy that has a significant impact in government policy and economic planning. It also helps policy makers for future decisions. Multivariate econometric forecasting models associated with many limitations, so an alternative approach is the use of univariate models, but most of these methods need a lot of data to achieve the best result. In this study, data from 1959 to 2005 were used to estimate the models. Then the performances of auto regressive integrated moving average (ARIMA) model in the economic growth forecast of Iran was evaluated and compared with Markov switching method and fuzzy neural network (ANFIS) for the period from 2006 to 2013 using the Criteria RMSE, MAE and MAPE. Results showed that ANFIS model had the best performance. Furthermore, Markov switching method was more suitable than ARIMA model.

کلیدواژه‌ها [English]

  • Economic Growth
  • Markov Switching
  • ANFIS
  • ARIMA
جعفری‌صمیمی، احمد؛ طهرانچیان، امیرمنصور و قادری، سامان (1393). "اثرات نامتقارن کل‏های پولی دیویژیا ‏بر تورم در ایران: کاربرد روش‏ چرخشی مارکوف". فصلنامه علمی پژوهشی پژوهش‌های رشد و توسعه اقتصادی، سال چهارم، شماره 16، 40-21.          
 
جهانیان، ناصر (1388). "اسلام و رشد عدالت محور". تهران، سازمان انتشارات پژوهشگاه فرهنگ و اندیشه اسلامی، شماره 1، جلد اول.
قره‌باغیان، مرتضی (1372). "رشد نوین اقتصادی". تهران، خدمات فرهنگی رسا، شماره 1، جلد دوم.
مهدیلو، علی؛ صادقی، حسین و عصاری آرانی، عباس (1394). "برآورد تأثیر غیرخطی فرصت‌های رانت‌جویی بر رشد اقتصادی در ایران با استفاده از مدل مارکف سوئیچینگ". فصلنامه علمی پژوهشی پژوهش‌های رشد و توسعه اقتصادی، سال پنجم، شماره 18، 30-11.

ّ

 
Abeysinghe, T. (1998). “Forecasting Singapore’s Quarterly GDP with Monthly External Trade”. International Journal of Forecasting, 14(3), 505-513.
Armstrong, J. S. & Collopy, F. (1992). “Error Measures for Generalizing about Forecasting Methods: Empirical Comparisons”. International Journal of Forecasting, 8(1), 69-80.
Azadeh, A., Saberi, M., Ghaderi, S. F., Gitiforouz, A. & Ebrahimipour, V. (2008). “Improved Estimation of Electricity Demand Function by Integration of Fuzzy System and Data Mining Approach”. Energy Conversion and Management, 49(8), 2165–2177.
Baffigi, A., Golinelli, R. & Parigi, G. (2004). “Bridge Models to Forecast the Euro Area GDP”. International Journal of Forecasting, 20(2), 447-460.
Banbura, M. & Runstler, G. (2011). “A Look into the Factor Model Black Box: Publication Lags and the Role of Hard and Soft Data in Forecasting GDP”. International Journal of Forecasting, 27, 333–346.
Barhoumi, K., Darne, O. & Ferrara, L. (2010). “Are Disaggregate Data Useful for Factor Analysis in Forecasting French GDP”. Journal of Forecasting, 29(2), 132-144.
EViews 7 User’s Guide II (2009). “Quantitative Micro Software”, LLC.
Gan, W. B. & Wong, F. C. (1993). “A Bayesian Vector-autoregression Model for Forecasting Quarterly GDP”. The Singapore Experience. Singapore Economic Review, 38(2), 15-34.
Giovanis, E. (2010). “Application of Adaptive Network-based Fuzzy Inference System in Macroeconomic Variables Forecasting”. World Academy of Science. Engineering and Technology, 64, 660-667.
Hamilton, J. )1989(. “A New Approach to The Economic Analysis of Nonstationary Time Series and The Business Cycle”. Econometrica: Journal of the Econometric Society, 57(2), 357–384.
Hamzacebi, C. (2008). “Improving Artificial Neural Networks’ Performance in Seasonal Time Series Forecasting”. Information Sciences, 178(23), 4550-4559.
Hukkinen, J. & Viren, M. (1999). “Assessing the Forecasting Performance of a Macroeconomic Model”. Journal of Policy Modeling, 21(1), 753-768.
Jafari-Samimi, A., Shirazi, B. & Fazlollahtabar, H. (2007). “A Comparison between Time Series, Exponential Smoothing and Neural Network Methods to Forecast GDP of Iran”. Iranian Economic Review, 12(19), 19-35.
Jang, J. S. R., Sun, C. T. & Mizutani, E. (1997). “Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence”, Prentice Hall.
Jones, I. C. (1997). “Introduction to Economic Growth”. New York: W.W. Norton and Co. First Edition.
Kang, C. S. A. (1980). “Identification of Autoregressive Integrated Moving Average Time Series”. Ph.D. Thesis, Arizona State University.
Krolzig, H. (1997). “Markov-Switching Vector Autoregressions: Modelling, Statistical Inference, and Application to Business Cycle Analysis”. Springer, Berlin.
Mirbagheri, M. (2010). “Fuzzy-Logic and Neural Network Fuzzy Forecosting of Iran GDP Growth”. African Journal of Business Management, 4(6), 925-929.
Pouzols, F. M., Lendasse, A. & Barros, A. B. (2008). “Autoregressive Time Series Prediction by Means of Fuzzy Inference Systems Using Estimation of Electricity Demand Function by Integration of Fuzzy System and Data Mining Approach”. Energy Conversion and Management, 49(2), 2165–2177.
Qin, D., Cegas, M. A., Ducanes, G., Magtibay-Ramos, N. & Quising, P. (2008). “Automatic Leading Indicators versus Macroeconometric Structural Models: A Comparison of Inflation and GDP Growth Forecasting”. International Journal of Forecsting, 24(3), 399–413.
Schumacher, C. (2007). “Forecasting German GDP Using Alternative Factor Models Based on Large Datasets”. Journal of Forecasting, 26(1), 271–302.
Schumacher, C. (2008). “Real-time Forecasting of German GDP Based on a Large Factor Model with Monthly and Quarterly Data”. International Journal of Forecasting, 24(3), 386–398.
Schumacher, C. (2010). “Factor Forecasting Using International Targeted Predictors: The Case of German GDP”. Economics Letters, 107(2), 95–98.
Stock, J. H. & Watson, M. W. (2003). “Forecasting Output and Inflation: the Role of Asset Prices”. Journal of Economic Literature, 41(3), 788–829.
Swanson, N. R. & White, H. (1997). “A Model Selection Approach to Real-Time Macroeconomic Forecasting Using Linear Models and Artificial Neural Networks”. The Review of Economics and Statistics, 79(1), 540-550.
Wang, Ch. (2011). “A Comparison Study between Fuzzy Time Series Model and ARIMA Model for Forecasting Taiwan Export”. Expert Systems with Applications, 38(8), 9296–9304.
Zhang, G. P. & Qi, M. (2005). “Neural Network Forecasting for Seasonal and Trend Time Series”. European Journal of Operational Research, 160(2), 501-514.