با همکاری مشترک دانشگاه پیام نور و انجمن اقتصاد انرژی ایران

نوع مقاله : پژوهشی

نویسندگان

1 دانشجوی دکتری مدیریت مالی دانشگاه علامه طباطبایی، تهران، ایران.

2 هیئت علمی گروه مالی و بانکداری دانشکده مدیریت و حسابداری دانشگاه علامه طباطبایی، تهران، ایران.

3 استاد گروه مدیریت صنعتی دانشکده مدیریت و حسابداری دانشگاه علامه طباطبایی، تهران، ایران.

4 هیأت علمی گروه اقتصاد بازرگانی دانشکده اقتصاد دانشگاه علامه طباطبایی

چکیده

پول‌شویی به مثابه یکی از انواع فساد مالی نقش بسیار زیانباری بر روند توسعه اقتصادی کشورها داشته و مبارزه با آن لازمه تحقق ثبات و پویایی اقتصاد می‌باشد. برنامه‌ریزی توسعه اقتصادی کشور و تصمیم‌گیری برای اجرای سیاست‌های اقتصادی، نیازمند شناخت عملکرد کل اقتصاد شامل بخش رسمی و قانونی و بخش غیررسمی و غیرقانونی متأثر از پول‌شویی است. از این رو شناخت پیامدهای تکانه‌های ناشی از پول‌شویی مقدمه مبارزه با این پدیده است. این پژوهش از چارچوب مدل‌های تعادل عمومی پویای تصادفی (DSGE) برای مدل‌سازی بخش پول‌شویی ایران و بررسی تکانه‌های بهره‌وری برای تولید قانونی و تولید غیرقانونی در دوره‌ی 1383 تا 1399 استفاده نموده است. نتایج تحقیق نشان می‌دهد که مدل ارائه شده به خوبی توانسته رفتار ادواری و نوسانات متغیرها را شناسایی کند. طبق نتایج پژوهش، یک انحراف معیار تکانه مثبت بهره‌وری در بخش تولید قانونی و غیرقانوی حاکی از رفتار مشابه اکثر متغیرها (با شدت متغیر) به جز نیروی کار در هر دو بخش بوده به‌طوری که تکانه مثبت بهره‌وری هم در بخش تولید قانونی و هم در بخش تولید غیرقانونی باعث افزایش تولید بنگاه‌های قانونی و غیرقانونی و افزایش کل تولید، افزایش سطح دستمزد نیروی کار و قیمت کالاها در بخش قانونی، افزایش مصرف در بخش غیرقانونی و افزایش مصرف کل کالاها، افزایش میزان سرمایه‌گذاری و کاهش سرمایه فیزیکی (ثابت) و در نهایت افزایش عرضه پول و افزایش نرخ بهره گردیده است. تکانه مثبت بهره‌وری چه در بخش قانونی و چه غیرقانونی، سبب جایگزینی نیروی کار دو بخش قانونی و غیرقانونی می‌شود.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

The Effect of Money Laundering on Macroeconomic Variables in the Framework of Dynamic Stochastic General Models

نویسندگان [English]

  • aida hajnouri 1
  • meysam amiry 2
  • maghsoud amiri 3
  • hossein tavakolian 4
  • moslem peymani 2

1 Ph.D Student in Financial Management, Allameh Tabataba'i University, Tehran, Iran.

2 Assistant Professor, Department of Finance and Banking, Allameh Tabataba'i University, Tehran, Iran.

3 . Professor, Department of Management and Accounting, Allameh Tabataba'i University

4 . Associate professor, Department of Economics, Allameh Tabataba'i University, Tehran, Iran.

چکیده [English]

Money laundering one of the types of financial corruption has a very detrimental role on the economic. Planning the country's economic development and making decisions to implement economic policies requires recognition of the performance of the whole economy, including the formal and legal sector, and the informal and illegal sectors affected by money laundering. Hence, recognition of the consequences of money laundering shocks is a prelude to combating this phenomenon. This research has used dynamic stochastic general equilibrium models framework to model Iran's money laundering sector and investigate efficiency shocks for legal production and illegal production. The results show that the proposed model has been able to identify cyclical behavior and fluctuations of variables. The results of the research and comparison of a positive momentum of productivity in the legal and non legal production sectors indicate similar behavior of most variables except labor force in both sectors, so that the positive momentum of productivity in both legal and illegal production sectors increases the production of legal and illegal enterprises and the increase in total production, the level of labor wage and commodity prices in the legal sector, An increase in consumption in the illegal sector and an increase in the consumption of all goods, an increase in the amount of investment and a decrease in physical capital, and finally an increase in the demand for money and an increase in the interest rate.

کلیدواژه‌ها [English]

  • Credits
  • Enterprises
  • Employment
  • General Equilibrium Pattern
Abdullah Milani, M,. Bahrami, J,. Tavaklian, H. & Akbarpour Roshan, N. (2017). “The Effect of Tax Policies on the Underground Economy: DSGE Model”. Iranian Economic Research, 23(76), 1-15 (In Persian).
Alnasser Mohammed, S. A. (2021). “Money Laundering in Selected Emerging Economies: is there a Role for Banks?”. Journal of Money Laundering Control, 24(1), 102-110.
Arab Mazar Yazdi, A. & Khodkari, L. (2016). “Estimating the Volume of Dirty Money in Iran”. Economic Research Journal, 27, 119-142 (In Persian).
Araujo, R. & Moreira, S. (2005). “An Inter-Temporal Model of Dirty Money”. Journal of Money Laundering Control, 8(8), 260-262.
Argentiero, A. & Bollino, C. (2015). “Money Laundering in a Bayesian DSGE Model”.
Argentiero, A., Bagella, M. & Busato, F. (2008). “Money Laundering in a two-Sector Model: Using Theory for Measurement”. European Journal of Law and Economics, 26, 341-359.
Busato, F. & Chiarini, B. (2013). “Steady State Laffer Curve with the Underground Economy”. Public Finance Review, 41(5), 608-632.
Busato, F., Chiarini, B. & Di Maro, V. (2006). “Using Theory for Measurement: an Analysis of the Behaviour of Underground Economy. Working Paper, Aarhus University.
Calvo, G. (1983). “Staggered Prices in a Utility-Maximizing Framework”. Journal of Monetary Economics, 12(3), 383-398.
Ferwerda, J. & Bosma, Z. S. (2005). “The Effect of Money Laundering on Economic Growth”. Utrecht University School of Economics: Paper for Applied Economics Research Course.1-11.
Gjoni, M., Gjoni, A. & Kora, H. (2015). “Money Laundering Effects”. UBT International Conference. Durres, Albania: Edmond Hajrizi. 16, 13-20.
González, E., Rodríguez, F. & Rivero, S. (2014). “An Empirical Examination of the Determinants of the Shadow Economy”. Applied Economics Letters, 21(5), 304-307.
Hendriyetty, N, & Grewal, B. (2017). “Macroeconomics of Money Laundering: Effects and Measurements”. Journal of Financial Crime, 24(1), 65-81.
Hosseini, A. S. & Nasrallahi, Z. (2016). “Examination of the Relationship Between the Development of the Financial Sector and the Underground Economy in Iran”. Economic Research (Sustainable Growth and Development), 17(64), 1-24 (In Persian).
Ingram, B., Kocherlako, N. & Savin, N. (1997). “Using Theory for Measurement: An Analysis of the Cyclical Behavior of Home Production”. Journal of Monetary Economics, 40, 435-456.
Kar Azmoudeh Fard, Y., Akbari Moghadam, B., Mirzapour Babajan, A. & Hadizadeh, A. (2021). “Causality Relationship Between Financial Development and Underground Economy in Iran: MIMIC Approach and Hsiao's Causality”. Financial Economics, 15(4), 165-185 (In Persian).
Khaleghi Far, N. & Khadaveisi, H. (2018). “Modeling Small Open Economy in Terms of Electricity Market Structure in the form of Dynamic Stochastic General Equilibrium (DSGE) Model”. Iranian Energy Economics Research Journal, 8(31), 31-74 (In Persian).
Korystin, O., Mihus، I., Svyrydiuk, N., Likhovitskyy, Y. & Mitina, О. (2020). “Money Laundering: Macroeconomic Assessment Methods and Current Trend in Ukraine”. Scientific and Practical Publication، 1(32)، 341-350.
Lee, S., Song, X. & Lee, C. (2003). “Maximum Likelihood Estimation of Nonlinear Structural Equation Models with Ignorable Missing Data”. Journal Educat. Behav, Statist, 28, 111-134.
Levi, M. & Soudijn, M. (2020). “Understanding the Laundering of Organised Crime Money”. Crime and Justice, 49, 579-631.
Loayza, N., Villa، E. & Misas, M. (2019). “Illicit Activity and Money Laundering from an Economic Growth Perspective: A Model and an Application to Colombia”. Journal of Economic Behavior & Organization, 159, 442-487.
Malek, H. (2021). “Investigating the Effect of International Sanctions on Cash Anomalies and Money Laundering in Iranian Companies”. Modern Banking Studies, 4(4). 38-59 (In Persian).
Masciandaro, D. (2007). “Economics of Money Laundering: A Primer”. Paolo Baffi Centre Bocconi University Working Paper, 171, 1-22.
McDowell, J. & Novis,G. (2001). “The Consequences of Money Laundering and Financial Crime”. Economic Perspectives, 6(2), 6-10.
Moodley, M. (2008). “Money Laundering and Countermeasures: a Comparative Security Analysis of Selected Case Studies with Specific Reference to South Africa”. Doctoral Dissertation, University of Pretoria. 1-120.
Mojab, R. & Barakchian, S. M. (2010). “The Impact of Oil Income Shocks on Real Production Without Oil”. Quarterly Journal of Monetary and Banking Research, 4(9), 45-90 (In Persian).
Nasrallahi, Z. & Hakimi, N. (2014). “Investigating the Trend of Money Laundering Volume and its Effect on Consumption in Iran: a Structural Model Approach Using Amos Graphic Soft Ware (1979-2010)”. Quantitative Economics, 12(4), 135-157 (In Persian).
Orsi, R., Raggi, D. & Turino, F. (2014). “Size, Trend, and Policy Implications of the Underground Economy”. Review of Economic Dynamics, 17(3), 417-436.
Pursalimi, M., Kikha, M. & Salmani Qarai, K. (2015). “A New Model for Estimating the Volume of Wallets in Iran's Economy (Using Numerical Methods and Inverse Problem in Economics)”. Monetary Economics, Finance, 11(23), 216-239 (In Persian).
Quirk, P. (1996). “Macroeconomic Implications of Money Laundering”. IMF Working Paper, 10-17.
Ramedoust, M., Alomran, R., Panahian, H. & Asgharpour, H. (2023). “Investigating the Asymmetric Effects of Monetary Policy on the Macroeconomic Variables of Iran in the Short and Long Term Using the NARDL Technique”. Economic Growth and Development Research, 13(50), 97-110 (In Persian).
Sadeghi Amrabadi, B., Gugerdchian, A. & Shahbazi, N. (2011). “Empirical Analysis of the Effects of Money Laundering on Economic Growth, Government Spending and Income Inequality in Iran”. Strategic Researches of Social Order and Security, 1(1), 97-117 (In Persian).
Shah, I. & Aish, K. (2022). “A Nexus Between Corruption, Money Laundering (ML) and Inflation: Evidence from South Asian Countries”. Journal of Money Laundering Control, 25(4),730-741.
Sharifi, S. M. R., Haghighat, A., Ebrahimi, M. & Aminifard, A. (2021). “Investigating the Effect of Financial Development and Tax on the Underground Economy; Evidence from Iran's Economy”. Economic Growth and Development Research, 12(46), 67-88 (In Persian).
Sidrauski, M. (1967). “Inflation and Economic Growth”. Journal of Political Economy,75(6), 796-810.
Tavaklian, H. & Sarem, M. (2016). “DSGE Models in DYNARE Software (Modeling, Solution and Estimation Based on Iranian Economy)”. Tehran: Monetary and Banking Research Institute (Central Bank of the Islamic Republic of Iran) (In Persian).
Teichmann, F. (2019). “Recent Trends in Money Laundering and Terrorism Financing”. Journal of Financial Regulation and Compliance, 27(1), 2-12.